TD 4. Matrices de densité, no-signalling

1 Trace

Definition 1 (Trace).

The trace of a matrix $A \in M_d(\mathbb{C})$ is defined to be : $Tr(A) = \sum_{i \in 0...d-1} A_{ii}$. Alternatively if $\{|i\rangle\}$ is the canonical o.n.b. of \mathbb{C}^d : $Tr(A) = \sum_{i \in 0...d-1} \langle i|A|i\rangle$.

Lemma 1 (Cyclicity, linearity). Let $A, B \in M_d(\mathbb{C})$. We have Tr(AB) = Tr(BA) and Tr(A + B) = Tr(A) + Tr(B). Similarly Tr(zA) = z Tr(A).

Proof.

$$\operatorname{Tr}(AB) = \sum_{ij} A_{ij}B_{ji}$$
$$= \sum_{ij} B_{ji}A_{ij} = \sum_{ij} B_{ij}A_{ji}$$
$$= \operatorname{Tr}(BA)$$
$$\operatorname{Tr}(A+B) = \sum_{i} (A_{ii} + B_{ii}) = (\sum_{i} A_{ii}) + (\sum_{i} B_{ii})$$
$$= \operatorname{Tr}(A) + \operatorname{Tr}(B)$$
$$\operatorname{Tr}(zA) = \sum_{i} zA_{ii} = z\sum_{i} A_{ii} = z\operatorname{Tr}(A) \qquad \Box$$

Lemma 2.

Let $A \in M_d(\mathbb{C})$. We have : $Tr(A|\psi\rangle\langle\psi|) = \langle\psi|A|\psi\rangle.$

Proof. Let $\{|i\rangle\}$ be the canonical o.n.b. Then :

$$Tr(A|\psi\rangle\langle\psi|) = \sum_{i} \langle i|A|\psi\rangle\langle\psi|i\rangle$$
$$= \sum_{i} \langle \psi|i\rangle\langle i|A|\psi\rangle = \langle \psi|\sum_{i} |i\rangle\langle i|A|\psi\rangle$$
$$= \langle \psi|\mathbb{I}A|\psi\rangle = \langle \psi|A|\psi\rangle \quad \Box$$

2 Postulats revisités

Postulate 3 (Generalized measurements).

A generalized measurement upon an n-dimensional quantum system is described by a collection $\{M_k\}$ of measurement operators $M_k \in M_{m \times n}(\mathbb{C})$ satisfying the completeness relation

$$\sum_{k} M_k^{\dagger} M_k = \mathbb{I}.$$

If the quantum system has state $|\psi\rangle$, then the probability that result k occurs is given by

$$p(k) = Tr(M_k^{\dagger}M_k|\psi\rangle\langle\psi|) = \langle\psi|M_k^{\dagger}M_k|\psi\rangle.$$

Then state of the system after the measurement is

$$\begin{split} |\psi'\rangle &= M_k |\psi\rangle / \sqrt{\langle \psi | M_k^{\dagger} M_k |\psi\rangle} \\ &= M_k |\psi\rangle / \sqrt{p(k)} \end{split}$$

Remark 1. This postulate has unitary evolutions as a subcase. This is the case when the collection has only one measurement operator.

Remark 2. This postulate has projective measurements as a subcase. This is the case when : $\forall kl \ M_k M_l = \delta_{kl} M_k$.

3 Distributions de probabilités d'états quantiques

We may want to mix 'classical' probabilities with 'quantum' amplitudes. What may seem a legitimate way to do this is to denote by $\{(p_0, |\psi_0\rangle), \ldots, (p_r, |\psi_r\rangle)\}$ the state of a quantum system which has state $|\psi_0\rangle$ with probability p_0 , state $|\psi_1\rangle$ with probability p_1, \ldots

Definition 2 (Ensemble state). An ensemble state is a list $\{(p_0, |\psi_0\rangle), \ldots, (p_r, |\psi_r\rangle)\}$ where $\forall i |\psi_i\rangle$ is a normalized vector of \mathbb{C}^n and $\sum_i p_i = 1$.

The main weakness of ensemble states are their non-canonicity. That is we may have two different ensemble states which are physically undistinguishable, and hence 'equal for all purpose'.

Example 1. The ensembles $\{(1/2, |0\rangle), (1/2, |1\rangle)\}$ and $\{(1/2, 1/\sqrt{2}(|0\rangle + |1\rangle), (1/2, 1/\sqrt{2}(|0\rangle - |1\rangle))\}$ are undistinguishable physically.

Example 2. The ensembles $\{(3/4, |0\rangle), (1/4, |1\rangle)\}$ and $\{(1/2, \sqrt{3/4}|0\rangle + \sqrt{1/4}|1\rangle), (1/2, \sqrt{3/4}|0\rangle - \sqrt{1/4}|1\rangle)\}$ are undistinguishable physically.

To prove these things we need the theoretical tools provided next. Meanwhile I challenge you to find a generalized measurement $\{M_k\}$ which discriminates these ensembles (i.e. such that the p(k) vary from one ensemble to the other). This is impossible.

4 Formalisme des matrices de densité

Postulate 1. '

The state of an n-dimensional quantum system is fully described by its density matrix ρ , which its a positive unit trace matrice over \mathbb{C}^n . In other words $\rho \in \text{Horm}^+(\mathbb{C})$ and $\text{Tr}(\rho) = 1$

In other words $\rho \in \operatorname{Herm}_d^+(\mathbb{C})$ and $\operatorname{Tr}(\rho) = 1$.

Postulate 3. '

A generalized measurement upon an n-dimensional quantum system is described by a collection $\{M_k\}$ of measurement operators $M_k \in M_{m \times n}(\mathbb{C})$ satisfying the completeness relation

$$\sum_{k} M_{k}^{\dagger} M_{k} = \mathbb{I}$$

If the quantum system has density matrix ρ , then the probability that result k occurs is given by

$$p(k) = Tr(M_k^{\dagger} M_k \rho).$$

Then state of the system after the measurement is

$$\rho' = M_k \rho M_k^{\dagger} / Tr(M_k^{\dagger} M_k \rho)$$
$$= M_k \rho M_k^{\dagger} / p(k)$$

Postulate 4. '

The state space of a composite physical system is the tensor product of the space space of the component physical systems.

Before the two systems are correlated in any manner if we have ρ^A is the density matrix of system A and ρ^B is the density matrix of system B, then the joint system has density matrix $\rho^A \otimes \rho^B$.

If a bipartite system has density matrix ρ^{AB} we call ρ^{A} the reduced density matrix of A, which corresponds to ignoring system B and whatever may happen to it. We have

$$\rho^A = Tr_B(\rho^{AB})$$

where $Tr_B(.)$ is defined to take $\tau^A \otimes \sigma^B$ into $Tr(\sigma)\tau$ and is extended to all other matrices over the tensor space by linearity.

An important subset of $\operatorname{Herm}_{mn}^+(\mathbb{C})$ is the set of *separable states*, i.e. those which can be written in the form

$$\rho = \sum_x \lambda_x \rho_1^x \otimes \rho_2^x$$

where $\lambda_x \geq 0$ and the ρ_1^x and ρ_2^x belong to $\operatorname{Herm}_m^+(\mathbb{C})$ and $\operatorname{Herm}_n^+(\mathbb{C})$ respectively. They represent those states for which there is no 'entanglement' between the subsystems. There may be correlations but these are only of a classical, probabilistic nature.

Canonicité

Let ρ_S denote the density matrix which corresponds to the ensemble state S. E.g. if $S = \{(p_0, |\psi_0\rangle), \dots, (p_r, |\psi_r\rangle)\}$ then $\rho_S = \sum_i p_i |\psi_i\rangle \langle \psi_i |$.

Lemma 3.

Consider an ensemble state $S = \{(p_0, |\psi_0\rangle), \dots, (p_r, |\psi_r\rangle)\}$, its corresponding density matrix $\rho_S = \sum_i p_i |\psi_i\rangle \langle\psi_i|$, and a generalized measurement $\{M_k\}$. Postulate 3' on ρ_S yields the same measurement statistics as Postulate 3 on S.

Moreover suppose outcome k occurs. Consider S' the ensemble state as given from S by postulate 3, and its corresponding density matrix $\rho_{S'}$. Consider $(\rho_S)'$ the post-measurement density matrix as given from ρ_S by Postulate 3'. We have $(\rho_S)' = \rho_{S'}$. Proof.

$$p(k) = \sum_{i} p_{i} \operatorname{Tr}(M_{k}^{\dagger}M_{k}|\psi_{i}\rangle\langle\psi_{i}|)$$

$$= \operatorname{Tr}(M_{k}^{\dagger}M_{k}\sum_{i} p_{i}|\psi_{i}\rangle\langle\psi_{i}|)$$

$$= \operatorname{Tr}(M_{k}^{\dagger}M_{k}\rho_{S})$$

$$\rho_{S'} = \sum_{i} p(i|k)\frac{M_{k}|\psi_{i}\rangle\langle\psi_{i}|M_{k}^{\dagger}}{p(k|i)}$$

$$\operatorname{Tr}(M_{k}^{\dagger}M_{k}|\psi_{i}\rangle\langle\psi_{i}|)$$

$$= \sum_{i} p_{i}\frac{M_{k}|\psi_{i}\rangle\langle\psi_{i}|M_{k}^{\dagger}}{p(k)}$$

$$= \sum_{i} p_{i}\frac{M_{k}|\psi_{i}\rangle\langle\psi_{i}|M_{k}^{\dagger}}{\operatorname{Tr}(M_{k}^{\dagger}M_{k}\rho)}$$

$$= (\rho_{S})' \square$$

Lemma 4.

Consider a probability distribution over density matrices $S = \{(p_0, \rho_0), \dots, (p_r, \rho_r)\}$, and let $\rho_S = \sum_i p_i \rho_i$, Consider a generalized measurement $\{M_k\}$. Postulate 3' on ρ_S yields the same measurement statistics as if applied on S.

Moreover suppose outcome k occurs. Consider S' the ensemble state as given from S by postulate 3', and its corresponding density matrix $\rho_{S'}$. Consider $(\rho_S)'$ the post-measurement density matrix as given from ρ_S by Postulate 3'. We have $(\rho_S)' = \rho_{S'}$.

Proof. Very similar to the one above. \Box

Physical interpretation. The density matrix $\rho = |\psi\rangle\langle\psi|$ is an alternative, equivalent notation to the state vector $|\psi\rangle$, but this representation has the advantage of being able to hold probability distributions over states, i.e. ρ_1 with probability p_1 and ρ_2 with probability p_2 has density matrix $p_1\rho_1 + p_2\rho_2$. This representation is canonical in the sense the if $\rho \neq \sigma$, then there exists a measurement yielding different measurement statistics upon these states.

5 No-signalling

Lemma 5. Consider ρ a bipartite state and $\mathbb{I} \otimes \widehat{\$}$ a quantum operation acting solely upon the second subsystem. We have :

$$Tr_2(\rho) = Tr_2(\mathbb{I} \otimes \widehat{\$}(\rho))$$

Proof Say $\rho = \sum_{ij} \alpha_{ij} A_i \otimes B_j$ and $\widehat{\$}$ has operator sum representation $\{M_k\}$. $\operatorname{Tr}_2(\mathbb{I} \otimes \widehat{\$}(\rho)) = \operatorname{Tr}_2(\mathbb{I} \otimes \widehat{\$}(\sum \alpha_{ij} A_i \otimes B_j))$

$$\operatorname{Tr}_{2}(\mathbb{I} \otimes \widehat{\$}(\rho)) = \operatorname{Tr}_{2}(\mathbb{I} \otimes \widehat{\$}(\sum_{ij} \alpha_{ij}A_{i} \otimes B_{j}))$$
$$= \sum_{ij} \alpha_{ij}\operatorname{Tr}_{2}(\sum_{k} A_{i} \otimes M_{k}B_{j}M_{k}^{\dagger})$$
$$= \sum_{ij} \alpha_{ij}A_{i} \otimes \operatorname{Tr}(\sum_{k} M_{k}B_{j}M_{k}^{\dagger})$$
$$= \sum_{ij} \alpha_{ij}A_{i} \otimes \operatorname{Tr}(\sum_{k} M_{k}^{\dagger}M_{k}B_{j})$$
$$= \sum_{ij} \alpha_{ij}A_{i} \otimes \operatorname{Tr}(B_{j})$$
$$= \operatorname{Tr}_{2}(\rho)$$